Sains Malaysiana
53(9)(2024): 3097-3111
http://doi.org/10.17576/jsm-2024-5309-15
Analysis of Schlemm's Canal
Measurement and Evaluation with Fourier-Domain Optical Coherence Tomography in
Primary Open-Angle Glaucoma
(Analisis Pengukuran dan Penilaian Saluran Schlemm dengan Tomografi Koheren Optik Fourier-Domain dalam Glaukoma Sudut Terbuka Primer)
SUCIJANTI1,
ZHI LAN YUAN1,*, YA LIANG1, SUN
HONG1, LIU WEI GU1 & SI ZHENLI2
1Department of Ophthalmology,
First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu
Province, China
2Department of
Ophthalmology, Nanjing Tongren Hospital, Nanjing, Jiangsu Province, China
Diserahkan: 18 November 2023/Diterima: 17 Julai 2024
Abstract
The most common
cause of permanent vision loss or blindness in the world is glaucoma. Primary Open Angle Glaucoma (POAG) develops when the eye
drainage canals clog over time, increasing intraocular pressure and damaging
the optic nerve. In POAG, an ophthalmology examination usually shows an open
anterior chamber and chronic, irreversible multifactorial optic
neuropathy followed by central visual field loss. OCT is specifically employed to investigate the
elasticity of tissue, particularly in Schlemm's canal. This study aims to analyzed
the morphological parameters of Schlemm's canal among patients with POAG and
normal healthy control. In this observational study, we included one
hundred patients, among them 50 patients had POAG, and 50 healthy controls, and
both eyes were assessed. We measured the study cohort's and the healthy
cohort's eyes' elevated IOP and the Schlemm's canal cross-sectional area (CSA).
RT-Vue OCT was used to analyze both eyes' temporal, superior, inferior, and
nasal regions. The data were analyzed using both univariate and bivariate
methods. The characteristics of the morphological measurement of Schlemm's
canal results were similar to those of Kagemann et
al. There was a significant difference between age and SC measurement, but no
correlation was observed between SC measurement and IOP or visual acuity. OCT
is a useful way to evaluate the morphological status of Schlemm Canal in
glaucoma patients. The eyes with POAG had smaller Schlemm's Canal- CSA than the
normal eyes. The Schlemm canal-CSA in Chinese people had no differences from
that of peoples of other races.
Keywords: Glaucoma; intraocular pressure; OCT; Schlemm's canal; visual
acuity
Abstrak
Penyebab paling biasa kehilangan penglihatan kekal atau buta di dunia
adalah glaukoma. Glaukoma Sudut Terbuka Primer (POAG) berkembang apabila
saluran saliran mata tersumbat dari masa ke masa, meningkatkan tekanan
intraokular dan merosakkan saraf optik. Dalam POAG, pemeriksaan oftalmologi
biasanya mendedahkan ruang anterior terbuka dan neuropati optik multifaktorial
kronik yang tidak dapat dipulihkan diikuti dengan kehilangan medan penglihatan
pusat. OCT digunakan secara khusus untuk mengkaji keanjalan tisu,
terutamanya dalam saluran Schlemm. Kajian ini bertujuan untuk menganalisis
parameter morfologi saluran Schlemm dalam kalangan pesakit POAG dan kawalan
sihat normal. Dalam kajian pemerhatian ini, kami memasukkan seratus pesakit, antaranya
50 pesakit mempunyai POAG dan 50 kawalan sihat dengan kedua-dua mata telah
dinilai. Kami mengukur IOP kohort kajian dan mata kohort yang sihat dan kawasan
keratan rentas kanal Schlemm (CSA). RT-Vue OCT digunakan untuk menganalisis kawasan temporal
kedua-dua mata, superior, inferior dan hidung. Data dianalisis menggunakan
kaedah univariat dan bivariat. Ciri pengukuran morfologi hasil kanal Schlemm adalah serupa
dengan ciri Kagemann et al. Terdapat perbezaan yang signifikan antara umur dan
pengukuran SC, tetapi tiada korelasi diperhatikan antara pengukuran SC dan IOP
atau ketajaman penglihatan. OCT adalah cara yang sesuai untuk menilai status
morfologi kanal Schlemm pada pesakit glaukoma. Mata dengan POAG mempunyai Kanal Schlemm - CSA yang lebih
kecil daripada mata biasa. Kanal Schlemm-CSA dalam kalangan kaum Cina tidak mempunyai
perbezaan daripada kaum lain.
Kata kunci: Glaukoma; saluran Schlemm; ketajaman visual; OCT; tekanan intraokular
RUJUKAN
Ainsworth, J.R. & Lee, W.R. 1990. Effects
of age and rapid high-pressure fixation on the morphology of Schlemm's canal. Investigative
Ophthalmology & Visual Science 31(4): 745-750.
Battista, S.A., Lu, Z., Hofmann, S., Freddo,
T., Overby, D.R. & Gong, H. 2008. Reduction of the available area for
aqueous humor outflow and increase in meshwork herniations into collector
channels following acute IOP elevation in bovine eyes. Investigative
Ophthalmology & Visual Science 49(12): 5346-5352.
Becker, B. 1958. The decline in aqueous secretion
and outflow facility with age. American Journal of Ophthalmology 46(5
Part 1): 731-736.
Bentley, M.D., Hann, C.R. & Fautsch, M.P.
2016. Anatomical variation of human collector channel orifices. Investigative
Ophthalmology & Visual Science 57(3): 1153-1159.
Boldea, R.C., Roy, S. & Mermoud,
A. 2001. Ageing of Schlemm's canal in nonglaucomatous subjects. International Ophthalmology 24(2): 67-77.
Bourne, R.R., Stevens, G.A., White, R.A.,
Smith, J.L., Flaxman, S.R., Price, H., Jonas, J.B., Keeffe, J., Leasher, J.,
Naidoo, K., Pesudovs, K., Resnikoff, S., Taylor, H.R.
& Vision Loss Expert Group. 2013. Causes of vision loss worldwide,
1990-2010: A systematic analysis. The Lancet Global Health 1(6):
e339-e349.
Byszewska, A., Konopińska, J., Kicińska,
A.K., Mariak, Z. & Rękas,
M. 2019. Canaloplasty in the treatment of primary open-angle glaucoma: Patient
selection and perspectives. Clinical Ophthalmology 13: 2617-2629.
Caprioli, J. 2007. Intraocular pressure
fluctuation: An independent risk factor for glaucoma? Archives of
Ophthalmology 125(8): 1124-1125.
Caprioli, J. & Coleman, A.L. 2008.
Intraocular pressure fluctuation a risk factor for visual field progression at
low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 115(7): 1123-1129.e3.
Chen, J., Huang, H., Zhang, S., Chen, X. & Sun,
X. 2013. Expansion of Schlemm's canal by travoprost in healthy subjects determined by Fourier-domain
optical coherence tomography. Investigative Ophthalmology & Visual Science 54(2): 1127-1134.
Chen, Y.P. 2014. A review of optical coherence
tomography. Journal of Value Engineering 33(32): 255-256.
Day, A.C., Garway-Heath,
D.F., Broadway, D.C., Jiang, Y., Hayat, S., Dalzell, N., Khaw, K.T. &
Foster, P.J. 2013. Spectral domain optical coherence tomography imaging of the
aqueous outflow structures in normal participants of the EPIC-Norfolk Eye
Study. The British Journal of Ophthalmology 97(2): 189-195.
Dautriche, C.N., Tian,
Y., Xie, Y. & Sharfstein, S.T. 2015. A closer look at Schlemm's canal cell
physiology: Implications for biomimetics. J. Funct. Biomater. 6(3): 963-985.
Dvorak-Theobald, G. 1955. Further studies on the
canal of Schlemm; its anastomoses and anatomic relations. American Journal
of Ophthalmology 39(4 Pt 2): 65-89.
Fan, Y., Wei, J., Guo, L., Zhao, S., Xu, C., Sun,
H. & Guo, T. 2020. Osthole reduces mouse IOP
associated with ameliorating extracellular matrix expression of trabecular
meshwork cell. Investigative Ophthalmology & Visual Science 61(10):
38.
Foster, P.J. & Johnson, G.J. 2001.
Glaucoma in China: How big is the problem? The British Journal of
Ophthalmology 85(11): 1277-1282.
Gao, K., Song, S., Johnstone, M.A., Zhang, Q., Xu,
J., Zhang, X., Wang, R.K. & Wen, J.C. 2020. Reduced pulsatile trabecular
meshwork motion in eyes with primary open angle glaucoma using phase-sensitive
optical coherence tomography. Investigative Ophthalmology & Visual
Science 61(14): 21.
Gong, H., Qi, H., Sun, W., Zhang, Y., Jiang, D.,
Xiao, J., Yang, X., Wang, Y. & Li, S. 2012. Design and synthesis of a
series of pyrido[2,3-d]pyrimidine derivatives as CCR4
antagonists. Molecules 17(8): 9961-9970.
Grierson, I., Howes, R.C. & Wang, Q. 1984.
Age-related changes in the canal of Schlemm. Experimental Eye Research 39(4):
505-512.
Hamanaka, T., Matsuda, A., Sakurai, T. &
Kumasaka, T. 2016. Morphological abnormalities of Schlemm's canal in primary
open-angle glaucoma from the aspect of aging. Investigative Ophthalmology
& Visual Science 57(2): 692-706.
Hann, C.R., Bentley, M.D., Vercnocke,
A., Ritman, E.L. & Fautsch, M.P. 2011. Imaging the aqueous humor outflow
pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Experimental Eye Research 92(2): 104-111.
Hariri, S., Johnstone, M., Jiang, Y., Padilla, S.,
Zhou, Z., Reif, R. & Wang, R.K. 2014. Platform to investigate aqueous
outflow system structure and pressure-dependent motion using high-resolution spectral
domain optical coherence tomography. Journal of Biomedical Optics 19(10): 106013.
Hong, J., Xu, J., Wei, A., Wen, W., Chen, J., Yu,
X. & Sun, X. 2013. Spectral-domain optical coherence tomographic assessment
of Schlemm's canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology 120(4): 709-715.
Johnstone, M. 2016. Intraocular pressure control
through linked trabecular meshwork and collector channel motion. In Glaucoma
Research and Clinical Advances 2016 to 2018, edited by Knepper, P.A. &
Samples, J.R. Amsterdam: Kugler Publications.
Johnstone, M., Xin, C., Tan, J., Martin, E., Wen,
J. & Wang, R.K. 2021. Aqueous outflow regulation - 21st century concepts. Progress in Retinal and Eye Research 83: 100917.
Kagemann, L., Wang, B., Wollstein, G., Ishikawa, H., Mentley,
B., Sigal, I., Bilonick, R.A. & Schuman, J.S.
2015. Trabecular meshwork response to pressure elevation in the living human
eye. Journal of Visualized Experiments 100: e52611.
Kagemann, L., Nevins,
J. E., Jan, N. J., Wollstein, G., Ishikawa, H., Kagemann, J., Sigal, I.A., Nadler, Z., Ling, Y. &
Schuman, J.S. 2014a. Characterisation of Schlemm’s canal cross-sectional area. Br. J. Ophthalmol. 98(Suppl 2): ii10-ii14. doi:10.1136/bjophthalmol-2013-304629
Kagemann, L., Wang, B., Wollstein, G., Ishikawa, H., Nevins, J.E., Nadler,
Z., Sigal, I.A., Bilonick,
R.A. & Schuman, J.S. 2014b. IOP elevation reduces Schlemm’s canal
cross-sectional area. Investigative Ophthalmol. Vis. Sci. 55(3):
1805-1809. doi:10.1167/iovs.13-13264
Kagemann, L., Wollstein, G., Ishikawa, H., Sigal, I.A., Folio, L.S., Xu, J., Gong, H. & Schuman, J.S. 2011. 3D visualization of aqueous humor outflow
structures in-situ in humans. Experimental Eye Research 93: 308-315.
Karl, M.O., Fleischhauer, J.C., Stamer, W.D.,
Peterson-Yantorno, K., Mitchell, C.H., Stone, R.A. & Civan, M.M. 2005.
Differential P1-purinergic modulation of human Schlemm's canal inner-wall
cells. American Journal of Physiology Cell Physiology 288(4): C784-C794.
Khatib, T.Z., Meyer, P.A.R., Lusthaus,
J., Manyakin, I., Mushtaq, Y. & Martin, K.R. 2019. Hemoglobin video imaging
provides novel in vivo high-resolution imaging and quantification
of human aqueous outflow in patients with glaucoma. Ophthalmology
Glaucoma 2(5): 327-335.
Kuehn, M.H., Vranka, J.A.,
Wadkins, D., Jackson, T., Cheng, L. & Ledolter,
J. 2021. Circumferential trabecular meshwork cell density in the human eye.
Journal Exp. Eye Res. 205: 108494.
Lai, J., Su, Y., Swain, D.L., Huang, D., Getchevski, D. & Gong, H. 2019. The role of Schlemm's
canal endothelium cellular connectivity in giant vacuole formation: A 3D
electron microscopy study. Investigative Ophthalmology & Visual Science 60(5): 1630-1643.
Lewczuk, K., Jabłońska,
J., Konopińska, J., Mariak,
Z. & Rękas, M. 2022. Schlemm's canal: The
outflow 'vessel'. Acta Ophthalmol. 100(4): e881-e890. doi: 10.1111/aos.15027
Luo, X.G. 2010. Human Anatomy (Systemic
Anatomy). 3rd ed. Beijing: Higher Education Press. p. 194.
Lusthaus, J.A., Khatib, T.Z., Meyer, P.A.R., McCluskey, P. & Martin,
K.R. 2021. Aqueous outflow imaging techniques and what they tell us about
intraocular pressure regulation. Eye (London, England) 35(1): 216-235.
Mansouri, K. & Shaarawy, T. 2015. Update on
Schlemm's canal based procedures. Middle East African Journal of
Ophthalmology 22(1): 38-44.
Osmond, M.J., Krebs, M.D. & Pantcheva,
M.B. 2020. Human trabecular meshwork cell behavior is influenced by collagen
scaffold pore architecture and glycosaminoglycan composition. Biotechnology
and Bioengineering 117(10): 3150-3159.
Parc, C. & Johnson, D.H. 2003. Physiology
of aqueous humor outflow resistance: Its relation to giant vacuoles. J. Fr. Ophtalmol. 26(2): 198-201 (Article in French).
Quigley, H.A. & Broman, A.T. 2006. The number
of people with glaucoma worldwide in 2010 and 2020. The British Journal of
Ophthalmology 90(3): 262-267.
Resnikoff, S., Pascolini,
D., Etya'ale, D., Kocur, I., Pararajasegaram,
R., Pokharel, G.P. & Mariotti, S.P. 2004. Global data on visual impairment
in the year 2002. Bulletin of the World Health Organization 82(11):
844-851.
Shi, G., Wang, F., Li, X., Lu, J., Ding, Z., Sun,
X., Jiang, C. & Zhang, Y. 2012. Morphometric measurement of Schlemm's canal
in normal human eye using anterior segment swept source optical coherence
tomography. Journal of Biomedical Optics 17(1): 016016.
Tamm, E.R., Braunger, B.M.
& Fuchshofer, R. 2015. Intraocular pressure and the mechanisms involved in resistance of the
aqueous humor flow in the trabecular meshwork outflow pathways. Prog.
Mol. Biol. Transl. Sci. 134: 301-314.
Tham, Y.C., Li, X., Wong, T.Y., Quigley,
H.A., Aung, T. & Cheng, C.Y. 2014. Global prevalence of glaucoma and
projections of glaucoma burden through 2040: A systematic review and
meta-analysis. Ophthalmology 121(11): 2081-2090.
UNP. 2022. World Population Prospects. https://population.un.org/wpp/ Accessed on 12 August 2023.
Vahabikashi, A., Gelman,
A., Dong, B., Gong, L., Cha, E.D.K., Schimmel, M., Tamm, E.R., Perkumas, K., Daniel Stamer, W., Sun, C., Zhang, H.F.,
Gong, H. & Johnson, M. 2019. Increased stiffness and flow resistance of the
inner wall of Schlemm's canal in glaucomatous human eyes. Proceedings of the
National Academy of Sciences of the United States of America 116(52):
26555-26563.
Vranka, J.A., Kelley, M.J., Acott, T.S. &
Keller, K.E. 2015. Extracellular matrix in the trabecular meshwork: Intraocular
pressure regulation and dysregulation in glaucoma. Experimental Eye Research 133: 112-125.
Wang, F., Shi, G., Li, X., Lu, J., Ding, Z., Sun,
X., Jiang, C. & Zhang, Y. 2012. Comparison of Schlemm's canal's biological
parameters in primary open-angle Glaucoma and normal human eyes with swept
source optical. Journal of Biomedical Optics 17(11): 116008.
Wong, T.Y., Loon, S.C. & Saw, S.M. 2006. The epidemiology of age related eye diseases in Asia. The British Journal of Ophthalmology 90(4): 506-511.
Xin, C., Wang, R.K., Song, S., Shen, T., Wen, J.,
Martin, E., Jiang, Y., Padilla, S. & Johnstone, M. 2017. Aqueous outflow
regulation: Optical coherence tomography implicates pressure-dependent tissue
motion. Experimental Eye Research 158: 171-186.
Xin, C., Johnstone, M., Wang, N. & Wang, R.K.
2016. OCT study of mechanical properties associated with trabecular meshwork
and collector channel motion in human eyes. PLoS ONE 11(9): e0162048.
Yan, X., Li, M., Chen, Z., Zhu, Y., Song, Y. &
Zhang, H. 2016a. Schlemm's canal and trabecular meshwork in eyes
with primary open angle glaucoma: A comparative study using high-frequency
ultrasound biomicroscopy. PLoS ONE 11(1): e0145824.
Yan, X., Li, M., Song, Y., Guo, J., Zhao, Y., Chen,
W. & Zhang, H. 2016b. Influence of exercise on intraocular
pressure, Schlemm's canal, and the trabecular meshwork. Investigative
Ophthalmology & Visual Science 57(11): 4733-4739.
Zhu, J.Y., Ye, W., Wang, T. & Gong, H.Y. 2013.
Reversible changes in aqueous outflow facility, hydrodynamics, and morphology
following acute intraocular pressure variation in bovine eyes. Chin. Med. J.
(Engl) 126(8): 1451-1457.
*Pengarang untuk surat-menyurat; email: zhilanyuan@vip.sina.com
|